

Physics - Grade 11 S

Unit Two: Mechanics

Chapter 8 – Newton's Second Law

Prepared & Presented by: Mr. Mohamad Seif

Rectilinear motion

Quiz

Time: 20min

We intend to study the motion of a block S of mass m = 200g along the path ABC that is composed of two parts AB, and BC.

Along the track AB:

S starts its motion from a point A with a speed $V_A = 8 \text{m/s}$ along the track AB whose length is AB=6m.

Suppose that the friction force along the track has a constant magnitude f.

The position vector of S along AB is $\vec{r} = (-2t^2 + 8t)\vec{\iota}$ SI Units.

1.Determine the expression of the velocity vector, and the acceleration vector at any instant t. Deduce the nature of motion along AB.

- 2. Determine the sum of the external forces acting on S along AB and deduce the magnitude of the friction force f along AB.
- 3. Verify that S attains at B a speed $V_B = 4$ m/s.

Along the track BC:

- S continues along the frictionless track BC, that makes 30° with the horizontal, and arrives at C with a speed $V_C = 3$ m/s.
- 1. Determine the acceleration of S along BC.
- 2.Deduce the length of the track BC and then the height of the incline CE.

$$m = 200g; V_A = 8m/s; AB=6m; \vec{r} = (-2t^2 + 8t)\vec{i} \text{ and } f.$$

1.Determine the expression of the velocity vector, and the acceleration vector at any instant t. Deduce the nature of motion along AB.

Velocity vector:
$$\overrightarrow{V} = (\overrightarrow{r})' = -4t + 8$$

Accel. vector:

$$\vec{a} = (\vec{V})' = -4$$

Since $a = -4m/s^2 < 0$; then the motion is UDRM

$$m = 200g$$
; $V_A = 8m/s$; $AB = 6m$; $\vec{r} = (-2t^2 + 8t)\vec{i}$ and f .

2.Determine the sum of the external forces acting on S along AB and deduce the magnitude of the friction force f along AB.

Apply newton's second law:

$$\sum \vec{F}_{ex} = m\vec{a}$$
: $\vec{W} + \vec{N} + \vec{f} = m\vec{a}$:

Projection along x-axis:

$$-f = m \times a \implies f = -0.2 \times -4 \text{ EMY}$$

$$f = 0.8N$$

$$m = 200g$$
; $V_A = 8m/s$; $AB = 6m$; $\vec{r} = (-2t^2 + 8t)\vec{t}$ and f .

3. Verify that S attains at B with a speed $V_B = 4$ m/s.

Using the time equation:

$$V^2 - V_0^2 = 2a(x - x_0)$$

$$V_B^2 - V_A^2 = 2a(AB - 0)$$

$$V_B^2 - (8)^2 = 2 \times -4(6)$$
 $V_B^2 - 64 = -48$ CADEMY

$$V_B = 4m/s$$

Along the track BC:

Be Smart

S continues along the frictionless track BC, that makes 30° with the horizontal, and arrives at C with a speed $V_C = 3$ m/s.

1.Determine the acceleration of S along BC.

2. Deduce the length of the track BC.

$$m = 200g; V_C = 3m/s; BC=?; f = 0; \alpha = 30$$

1.Determine the acceleration of S along BC.

Apply newton's second law:

$$\sum \vec{F}_{ex} = m\vec{a}.$$

$$\vec{W}_x + \vec{W}_y + \vec{N} = m\vec{a}$$

$$-mgsin\alpha = ma$$

$$a = -10 \times sin(30)$$

$$\int \frac{\partial m}{\partial x} g \sin \alpha = a$$

$$a = -5 \, m/s^2$$

$$m = 200g$$
; $V_C = 3m/s$; $BC = ?$; $f = 0$; $\alpha = 30$

2.Deduce the length of the track BC.

Using the time equation:

$$V^2 - V_0^2 = 2a(x - x_0)$$

$$V_C^2 - V_B^2 = 2a(BC - 0)$$

$$(3)^2 - (4)^2 = 2 \times -5(BC)$$

$$9-16=-10BC$$

$$-7 = -10BC$$

$$BC = 0.7m$$

Be Smart Academy

